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Abstract

Many physical systems involve discontinuous forces. The conventional numerical discretization
approach does not always yield a consistent prediction of the behavior of these systems. Here, as an
example of a system involving discontinuous forces, a simple frictional system subjected to continuous as
well as discontinuous excitations is considered. A set of orthogonal tracking functions is introduced, and
the discontinuous excitation is expanded in a series of these tracking functions. Using non-standard
analysis, the discontinuous functions are rigorously represented by continuous hyperreal approximations.
The transformation of discontinuous forces to continuous ones allows consistent prediction of the system’s
behavior, thus providing a reliable technique for simulation of systems involving discontinuous forces.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In many mechanical systems such as sliding seismic isolators [1–6], turbo machinery, and space
structures, friction is the main source of damping. Friction can give rise to self-sustained
oscillations resulting in undesirable behaviors such as machine tool chattering, which increases tool
wear and reduces production quality, and high-frequency noise ‘‘squeal’’ induced by nonlinear slip
forces in wheels, which in vehicles is quite annoying to both occupants and passersby. It is also a
major problem in feedback control applications and is the main source of jerky or hunting
motions about the desired positions of robotic systems [7–10]. Coulomb friction is widely used in
numerical simulation of these systems. Even this simple model involves considerable complexities
see front matter r 2004 Elsevier Ltd. All rights reserved.
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for analysis. The friction force is a discontinuous function of velocity and the coefficient of
friction is itself a function of velocity. Because of discontinuous physical effects, the conventional
numerical simulation methods, which treat such discontinuities with discretized representations,
do not always provide a consistent description of the behavior of systems with discontinuous
forces, and can lead to erroneous results.

Rzymowski [11] has proved the existence of solutions for the class of discontinuous dynamic
systems that includes dynamic frictional systems. According to Filippov [12], the evaluation of the
correct solutions of dynamical systems involving discontinuous forces by well-known methods
requires that the limit of a uniformly convergent sequence of solutions itself be a solution. He has
developed an algorithm by which the discontinuous system is approximated by a continuous one
after a regularization process. Danca and Coreanu [13] have explored the possibility of directly
approximating the discontinuous systems with continuous ones, eliminating the regularization
process.

A newly evolving field in calculus is the field of non-standard analysis (NSA), which has
provided the rigorous basis for calculus. NSA was conceived in the early 1960s by Robinson [14].
Keisler [15] has published a very good textbook on the subject. In NSA, the real line R is extended
to a hyperreal line �R; which contains infinite numbers as well as infinitesimals. A hyperreal
number x is considered as finite if jxj � n: And x is considered as infinitesimal if jxj � 1=n for all
integers n. It is noted that 0 is trivially infinitesimal. The difference between the hyperreal and the
real lines is that the hyperreal line contains an infinite H and an infinitesimal e ¼ 1=H: To
visualize a physical meaning for hyperreal quantities, Keisler proposed the metaphors of
‘‘infinitesimal microscope’’ and ‘‘infinite telescope’’. If one focuses an ‘‘infinitesimal microscope’’,
say at the number 1, and magnifies by an infinite amount H, then one sees points that are an
infinitesimal distance e apart. On the other hand, if one focuses an ‘‘infinite telescope’’ at H, then
one sees infinite numbers on the ordinary real scale. As such, in the neighborhood of any real
number, NSA defines the existence of a cloud or galaxy of infinitesimals that can be treated as
finite numbers for the purpose of manipulations. In NSA the limit process is built-in into the
standard algebraic manipulations of hyperreal numbers. As a result, a discontinuous function,
such as friction force, can be rigorously represented by a continuous hyperreal approximation that
is infinitely close to the actual discontinuous function. The NSA approach enables one to use the
conventional numerical simulation to consistently and reliably predict the behavior of systems
involving discontinuous forces.

Batty et al. [16] have proposed using a line segment with an infinite hyperreal slope to represent
the signum function. This representation of the signum function works quite well in problems that
do not involve differentiation of the signum function itself. Farassat et al. [17] have given an
excellent introduction to the basics of the NSA and have used it to investigate the resonance
phenomenon in a simple spring–mass system subjected to harmonic excitation.

Here, as an example of a system involving discontinuous forces, a simple frictional system
subjected to both harmonic as well as discontinuous excitations is considered. First, through
NSA, the discontinuous friction force is replaced by a continuous hyperreal representation. Then,
for the case of harmonic excitations, the Runge–Kutta method coded in Wolfram’s Mathematica
[18] is used to evaluate the solution. Point-wise, this solution is essentially identical to the
corresponding analytical solution as given by Den Hartog [19]. For the case of discontinuous
excitation, first a set of orthogonal tracking functions is introduced. Then, an equivalent
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analytical representation of the discontinuous excitation is developed through expansion in a
series of these tracking functions. Using NSA, this excitation, which involves a finite number of
discontinuities, is rigorously represented by continuous hyperreal approximations. Subsequently,
the Runge–Kutta method is used to evaluate the solution. The main source of discontinuity in the
dynamic system considered here is purely friction. However, NSA can be applied for dynamic
systems in which the discontinuous effects are due to impact, shock, phase change, etc.
2. Formulation

The equilibrium equation for the single degree of freedom system in Fig. 1 is

mu00 þ cu0 þ ku þ Fs þ Fd ¼ PðtÞ; (1)

where m is the mass, c is the viscous damping coefficient, k is the spring stiffness, PðtÞ is the
applied load, u is the displacement response, and prime denotes differentiation with respect to
time, t. Using a Coulomb model, the kinetic friction force, Fd ; is given by

Fd ¼ mdmgSgn u0 ¼ gmsmgSgn u0; (2)

where g ¼ md=ms denotes the ratio of the dynamic coefficient of friction, md ; to the static coefficient
of friction, ms; g denotes the gravitational acceleration, and Sgn is the signum function. The
maximum value of the static friction force, Fs; is equal to msmg; and its value is zero during any
sliding phase, i.e., Fs and Fd are mutually exclusive. During any non-sliding phase, its value is
given by

Fs ¼ ðPðtÞ 	 kuÞNðZÞQ; (3)

where

Z ¼ kd
msmg

kd
	

PðtÞ

kd
	

ku

kd

����
����

� �
(4)

and ZX0 is a necessary but not sufficient condition for sticktion. Further, the switching function
NðZÞ ¼ 1 for ZX0 and NðZÞ ¼ 0 for Zo0: Q ¼ 1 characterizes the zero crossing time of the
velocity, u0; and its value as a function of time can be defined by

Q ¼ 1	 jSgn u0j: (5)
u(t)

P(t)

k 

c 

µs or µd

m

Fig. 1. Representation of a single-degree-of-freedom system.
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It is necessary to have Q in Eq. (3) because Fs has to be zero when u0a0: To non-dimensionalize
the above relations, let

u ¼ dy; (6)

t ¼ ot ) u0 ¼ od _y ) u00 ¼ o2d €y; (7)

where dot denotes differentiation with respect to the non-dimensional time, t; and o ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
: d

in Eq. (4) represents that magnitude of deformation in the spring at which the magnitude of the
spring force, kd; is equal to the maximum value of the static friction force, ms mg: Therefore,

ms mg

kd
¼

msg

o2d
¼ 1: (8)

Substitutions of relations (6)–(8) into Eqs. (1)–(5) yield

€y þ 2B _y þ y þ f s þ f d ¼ pðtÞ; (9)

where

pðtÞ ¼
PðtÞ
kd

; z ¼
Z

kd
¼ 1	 jpðtÞ 	 yj; q ¼ 1	 jSgn _yj; (10)

f s ¼
Fs

kd
¼ ðpðtÞ 	 yÞNðzÞq; f d ¼

Fd

kd
¼ gSgn _y; (11)

and the switching function, NðzÞ; as defined by Mostaghel [20], is given by

NðzÞ ¼ 0:5ð1þ Sgn zÞ½1þ ð1	 Sgn zÞ�: (12)

Substitution of relations (10) and (11) into Eq. (9) yields the non-dimensional equation of
equilibrium as

€y þ 2B _y þ y þ ðpðtÞ 	 yÞNðzÞð1	 jSgn _yjÞ þ gSgn _y ¼ pðtÞ (13)

with the initial conditions: yð0Þ ¼ y0; _yð0Þ ¼ _y0: If the load pðtÞ is continuous, then the sources of
discontinuity in the above equation would be in the terms of Sgn _y and NðzÞ; both of which are
functions of dependent variables. But if pðtÞ is discontinuous, then a discontinuous function of the
independent variable, t; would also be present. In the following, first the discontinuous terms,
Sgn _y and NðzÞ; will be replaced by their corresponding equivalent continuous hyperreal
functions, and then two examples, one with continuous pðtÞ and the other with discontinuous pðtÞ;
will be presented.
3. Representation of discontinuities

There are a number of continuous functions that can equivalently represent the discontinuous
function Sgn _y to any degree of desired accuracy. Mostaghel and Davis [21] listed four of them.
Here, using the NSA technique [15], it will first be shown that the hyperbolic tangent function
tanh a _y can rigorously represent Sgn _y: Then, this representation of the signum function will be
used in subsequent developments. Let a ¼ 1=e2; where e2 is a positive real number in the
neighborhood of zero. The limits of the function tanh a _y from the right and from the left as e ! 0
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are evaluated as follows:

tanh
_y!eþ

_y

e2
¼ st

e _y=e2 	 e	 _y=e2

e _y=e
2
þ e	 _y=e2

 !
¼

stð1	 e	2 _y=e2Þ

stð1þ e	2 _y=e2Þ
¼

1	 stðe	2=eÞ

1þ stðe	2=eÞ
¼ 1; (14)

tanh
_y!e	

_y

e2
¼ st

e	 _y=e2 	 e _y=e
2

e	 _y=e2 þ e _y=e
2

 !
¼

stðe	2 _y=e2 	 1Þ

stðe	2 _y=e2þ1Þ
¼ 	

1	 stðe	2=eÞ

1þ stðe	2=eÞ
¼ 	1: (15)

‘‘st’’ in the above expressions is a symbol in NSA representing the ‘‘standard part’’ of an
expression. The �1 limits as e ! 0 (but never e ¼ 0) in the above expressions establish that the
function tanh a _y; in which a ¼ 1=e2; can equivalently represent the signum function Sgn _y:
Therefore,

Sgn _y � tanh a _y: (16)

In NSA e2 is a hyperreal infinitesimal, therefore a ¼ 1=e2 is a hyperreal infinite. As shown in
Fig. 2, in this case, e2 can be interpreted as the absolute value of an impending non-dimensional
velocity for a subsequent sliding phase. Therefore, the discontinuity in the interval ½	e2; e2�; about
the zero velocity, is replaced by a continuous hyperreal representation. Because of the nature of
infinitesimals as defined in NSA, the right-hand sides of expressions (14) and (15) are hyperreal
approximations. As such, the function tanh a _y is infinitely close to the signum function. Similarly,
Sgn z can be represented by

Sgn z � tanh Zz; (17)

where, like a; Z is a hyperreal infinite.
It is noted that the right-hand side of expression (16) is not just a mere approximation to the

left-hand side, as previously assumed by the author [21]. It is a rigorous mathematical
representation. It is also noted that as � ! 0; the function tanh a _y ! Sgn _y at the much higher
rate of 1=e2:
+ ε2

−ε2

Tanhαy

y

-1 

+1

.

.

Fig. 2. A representation of the signum function Sgn _y ¼ _y=j _yj � tanh _y=e2 ¼ tanh a _y:
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4. Examples

4.1. Continuous excitations

As the first example, consider a case for which the continuous excitation, pðtÞ; is harmonic.
Therefore,

pðtÞ ¼ p0 sin Ot ¼ p0 sin
O
o

t ¼ p0 sin bt; (18)

where O is the forcing frequency and b ¼ O=o denotes the frequency ratio. Therefore,
substitutions of relations (16)–(18) into the equilibrium equation (13) yield

€y þ 2B _y þ y þ ðpðtÞ 	 yÞNðzÞð1	 j tanh a _yjÞ þ g tanh a _y ¼ p0 sin bt; (19)

where

NðzÞ ¼ 0:5ð1þ tanh ZzÞ½1þ ð1	 tanh ZzÞ� (20)

and z is defined in relations (10). As an example, consider a case for which yð0Þ ¼ 0; _yð0Þ ¼ 0;
B ¼ 0; g ¼ md=ms ¼ 0:75; p0 ¼ 1:2; and b ¼ 0:50: Using the Runge–Kutta method coded in
Mathematica [18], Eq. (19) is integrated numerically using sufficiently large values for a and Z:
Very large values of a and Z require increased computational effort and can introduce
convergence problems. For the system considered, values of a and Z of the order of 102 yield
solutions that satisfy Eq. (19) point-wise in time. Using values of the order 103 or 104 yields
solutions essentially identical to the ones obtained using values of the order 102: However, for
simulation of each system, the sensitivities of a and Z to the variations in the system’s parameters
as well as the excitation frequency should be investigated.

The non-dimensional response quantities are presented in Figs. 3–7. Fig. 4 shows that the
sticktion force, f s; is zero for the intervals of time during which the velocity is not zero. It also
shows that when the velocity is zero, f s varies with time. On the other hand, Fig. 5 shows that the
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Fig. 3. Velocity and displacement response ( _y;	 	 	; y;——).
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Fig. 4. Velocity and stiction force ( _y;	 	 	; f s;——).
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Fig. 5. Velocity and kinetic friction force ( _y;	 	 	; f d ;——).

N. Mostaghel / Journal of Sound and Vibration 284 (2005) 583–595 589
kinetic friction force, f d ; is constant during sliding phases and is zero during sticktion phases. Fig.
6 is the phase diagram depicting the fact that, for the given parameters, the response very quickly
becomes periodic. Fig. 7 shows the force–displacement relation that is typical for frictional
systems. The spikes in this figure represent the transition points between sticktion and sliding
phases. Since the specified dynamic coefficient of friction is equal to 75% of the value of the static
coefficient of friction, the maximum value of the friction force develops a jump at the transition
points. This fact can also be observed by a comparison of Figs. 4 and 5.
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Fig. 6. Variation of velocity with displacement.
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Fig. 7. Force–displacement response, continuous input.
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4.2. Discontinuous excitations

As the second example, consider a case for which the discontinuous excitation, pðtÞ; is as given
in Table 1. The time history for pðtÞ is shown in Fig. 8. To express pðtÞ as an equivalent
continuous function of time, let the switching functions be defined by

NðwiÞ ¼ 0:5ð1þ SgnwiÞ½1þ ð1	 SgnwiÞ�; (21)
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Fig. 8. Time history of the excitation.

Table 1

Time history of the discontinuous excitation

ti 0 5 15 20 35 50 55 65 75

pi +1.25 	1.25 +1.25 	2.00 +2.00 	1.25 +1.25 	1.25 	1.25

N. Mostaghel / Journal of Sound and Vibration 284 (2005) 583–595 591
where wi ¼ t	 ti and Sgnwi is defined by the following continuous representation:

Sgnwi � tanh½lðt	 tiÞ�; (22)

where ti ¼ oti and l is a hyperreal infinite.
In order to analytically represent the discontinuous excitation pðtÞ; consider the tracking

function,fi; as defined by Mostaghel and Byrd [22]:

fi ¼ NðwiÞ 	 Nðwiþ1Þ; (23)

where Nðwnþ1Þ ¼ 0: As defined in the above equation, the functions fi; where i ¼ 1; 2; . . . ; n
form an orthogonal set of functions, i.e., 1=ðtiþ1 	 tiÞ

R tiþ1

ti
fi � fj dt ¼ 0 for iaj and

1=ðtiþ1 	 tiÞ
R tiþ1

ti
fi � fj dt ¼ 1 for i ¼ j: Therefore, the discontinuous function, pðtÞ; can be

expanded in a series of these orthogonal functions and can be expressed analytically by
the series

pðtÞ ¼
Xn

i¼1

fi piðtÞ; (24)

where piðtÞrepresents the function pðtÞ in the interval tiptotiþ1: The only condition on piðtÞ is
that it must be continuous in the interval tiototiþ1: Substituting the above representation of the
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excitation into Eq. (13) yields the equilibrium equation as

€y þ 2B _y þ y þ ðpðtÞ 	 yÞNðzÞð1	 j tanh a _yjÞ þ g tanh a _y ¼
Xn

i¼0

fi piðtÞ: (25)

As an example, let yð0Þ ¼ 0; _yð0Þ ¼ 0; B ¼ 0; g ¼ md=ms ¼ 0:75; which are the same values as in
example 1. Numerical integration of Eq. (25) yields the non-dimensional response quantities that
are presented in Figs. 9–13. As in the case of continuous excitations, Fig. 10 shows that the
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Fig. 9. Velocity and displacement response ( _y;	 	 	; y;——).
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Fig. 10. Velocity and stiction force ( _y;	 	 	; f s;——).
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Fig. 11. Velocity and kinetic friction force ( _y;	 	 	; f d ;——).
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Fig. 12. Variation of velocity with displacement.
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sticktion force, f s; is zero for the intervals of time during which the velocity is not zero. It also
shows that during the times when the velocity is zero, f s has non-zero values. On the other hand,
Fig. 11 shows that the kinetic friction force, f d ; is constant during sliding phases and is zero
during sticktion phases. Fig. 12 represents the phase diagram. Fig. 13, similar to Fig. 7, shows the
force–displacement relation typically expected for frictional systems.

The solution of Eq. (25) is far more sensitive to the values of a and Z than is the solution of Eq.
(19). For the system considered, to satisfy Eq. (25) at all points in time, one needs to use values for
a and Z of the order of 106; and for l of the order of 1010:
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Fig. 13. Force–displacement relation, discontinuous input.
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5. Summary and remarks

To consistently simulate systems involving discontinuous forces, two new schemes are
introduced. In the first scheme, the NSA is used to replace discontinuous functions with
continuous representations. In the second scheme, a set of orthogonal tracking functions is
defined and used to analytically express a discontinuous function in a series. As examples of the
efficacy of these schemes, the responses of a simple frictional system subjected to both a
continuous as well as to a discontinuous excitation are evaluated. In the case of continuous
excitation, the response quantities are essentially identical to those from the available analytical
solution. The system’s sensitivity to perturbations dictates how small an infinitesimal (like the �
used in this investigation) should be. The best test of the resulting solution is the point-wise
satisfaction of the equilibrium equation to the desired level of accuracy. It should be noted that, in
the given examples, since both Sgn _y and Sgn z are functions of the dependent variables, identical
values are used for a and Z: Neither example is very sensitive to the selection of Z: For the system
considered, the solutions are essentially identical for Z as small as 102: For the first example, i.e.
continuous input, a as low as 102 and as high as 105 yield essentially identical solutions. On the
other hand, for the case of discontinuous excitation, the solution is very sensitive to the values of a
and l: For simulation of any system, the sensitivities of a and Z to the variations in the system’s
parameters as well as the type of excitation should be investigated.
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